Discourse Parsing via Weighted Bag-of-Words, Coattention Neural Encoder, and Coattentative Convolutional Neural Network
نویسندگان
چکیده
Discourse parsing is an important task in NLP for understanding logical relations between adjacent sentences. In this report, we experiment with three models to improve classification task on discourse parsing: 1) weighted bag of words model using scoring DNN; 2) coattention neural encoder model using affinity matrix; 3) coattentative convolutional neural network model. We then show in our experiments that these three models all improve significantly over baseline model and give competitive accuracy on the task of discourse parsing over Penn Discourse Treebank .
منابع مشابه
Decoding Coattention Encodings for Question Answering
An encoder-decoder architecture with recurrent neural networks in both the encoder and decoder is a standard approach to the question-answering problem (finding answers to a given question in a piece of text). The Dynamic Coattention[1] encoder is a highly effective encoder for the problem; we evaluated the effectiveness of different decoder when paired with the Dynamic Coattention encoder. We ...
متن کاملProvide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملEnsemble of Convolutional Neural Networks for Medicine Intake Recognition in Twitter
We present the results from our participation in the 2nd Social Media Mining for Health Applications Shared Task – Task 2. The goal of this task is to develop systems capable of recognizing mentions of medication intake in Twitter. Our best performing classification system is an ensemble of neural networks with features generated by wordand character-level convolutional neural network channels ...
متن کاملA Stacking Gated Neural Architecture for Implicit Discourse Relation Classification
Discourse parsing is considered as one of the most challenging natural language processing (NLP) tasks. Implicit discourse relation classification is the bottleneck for discourse parsing. Without the guide of explicit discourse connectives, the relation of sentence pairs are very hard to be inferred. This paper proposes a stacking neural network model to solve the classification problem in whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017